

Luteophanols B and C, New Polyhydroxyl Compounds from Marine Dinoflagellate *Amphidinium* sp.

Takaaki Kubota," Masashi Tsuda," Yukiko Doi," Ayako Takahashi," Hiroko Nakamichi,"

Masami Ishibashi," Eri Fukushi," Jun Kawabata," and Jun'ichi Kobayashi*"

^aGraduate School of Pharmaceutical Sciences, and ^bFaculty of Agriculture, Hokkaido University, Sapporo 060-0812, Japan

Received 24 August 1998; accepted 24 September 1998

Abstract; Luteophanols B (1) and C (2), new polyhydroxyl linear carbon-chain compounds, have been isolated from the cultured marine dinoflagellate Amphidinium sp. The structures of 1 and 2 were elucidated by detailed analyses of two-dimensional NMR data containing HMBC, HMQC-RELAY, CH₂-selected E-HSQC, and CH₂-selected E-HSQC-TOCSY. ⊚ 1998 Elsevier Science Ltd. All rights reserved.

During our continuing search for structurally unique secondary metabolites from marine dinoflagellates,¹ we previously isolated a series of cytotoxic macrolides, amphidinolides, from dinoflagellates $Amphidinium \, \mathrm{sp.}^2$ Recently we investigated another strain of $Amphidinium \, \mathrm{sp.}$ (strain number Y-52), which was isolated from the inside cells of the Okinawan marine acoel flatworm $Pseudaphanostoma\ luteocoloris$, and isolated a new polyhydroxyl compound, luteophanol A (3), consisting of a C_{57} -linear aliphatic chain possessing one sulfate ester.³ Further investigation of extracts of the cultured dinoflagellate (Y-52) led to the isolation of two new polyhydroxyl compounds, luteophanols B (1) and C (2), both consisting of a C_{64} -linear aliphatic chain. In this paper we describe the isolation and structure elucidation of 1 and 2 on the basis of chemical degradation and newly developed 2D NMR experiments.

OH

The dinoflagellate was unialgally cultured at 25 °C for two weeks in seawater medium enriched with 1% ES supplement. The cultured algal cells were harvested by centrifugation and extracted with MeOH. The extract was partitioned between hexane and 1M NaCl aq, and the aqueous phase was successively extracted with CHCl₃ and then *n*-BuOH. The *n*-BuOH soluble materials were subjected to gel filtration on Sephadex LH-20 (MeOH and then MeOH/H₂O, 1:1) followed by purification with reversed-phase HPLC (ODS, 55 % MeOH) to afford luteophanols B (1, 0.00033 %, wet weight) and C (2, 0.00028%) together with luteophanol A (3).³

Electrospray ionization (ESI) MS of luteophanol B {1, $[\alpha]_D^{20} + 3.4^\circ$ (c 0.21, MeOH)} showed the pseudomolecular ion peak at m/z 1343 (M+Na)⁺, and its molecular formula, $C_{67}H_{116}O_{25}$, was established by HRESIMS [m/z 1343.7673 (M+Na)⁺, Δ -3.1 mmu]. The UV and IR spectra indicated the presence of conjugated diene chromophore (λ_{max} 232 nm) and hydroxy group (v_{max} 3430 cm⁻¹), respectively. The ¹H and ¹³C NMR data (Table 1) revealed that 1 contained two sp² quaternary carbons, twelve sp² methines, two sp² methylenes, twenty-seven sp³ methines, of which twenty-six were oxymethines, twenty-two sp³ methylenes including one oxymethylene, and two methyl groups. Since eight out of ten elements of unsaturation implied by the molecular formula were accounted for, 1 was inferred to possess two rings. The carbon chemical shift deuterium-induced shift experiments using CD₃OH/C₃D₅N (2:1) and CD₃OD/C₅D₅N (2:1) revealed the presence of twenty-three hydroxyl groups. Four (C-32, C-36, C-43, and C-47) of twenty-seven oxygenated carbon signals (δ 67 ~ 85) did not show the deuterium-induced upfield shifts, thus suggesting that these four oxymethine carbons constituted two ether rings.

The C-10–C-52 part of luteophanol B (1) was elucidated by extensive 2D NMR experiments including ¹H-¹H COSY, TOCSY, ROESY, HSQC, HMBC, HMQC-RELAY,⁴ and HMQC-TOCSY⁴ (Figure 1). Detailed analyses of ¹H-¹H COSY, TOCSY, and HSQC spectra revealed the proton-connectivities from H₂-1 to H₂-3, from H-10 to H₂-18, from H-19 to H₂-27, from H₃-66 to H₂-39, from H-41 to H₂-52, from H₂-54 to H₂-61, and from H₂-62 to H₂-64. PFG-HMBC spectrum of 1 showed the cross-peaks for H-29/C-27, H-67/C-39, H-67/C-41, and H-39/C-40, indicating the connecitivities of C-27 to C-28, C-39 to C-40, and C-40 to C-41. Two tetrahydropyran rings (C-32 to C-36 and C-43 to

Table 1. ^{1}H and ^{13}C NMR Data of Luteophanols B (1) and C (2) in CD₃OD/ C_5D_6N (2:1).

posi	tn. ¹³ C ^a	¹ H ^b	HMBC	HMQC-RELAY	E-HSQC-TOCSY	¹³ C ^a	2	H <i>^b</i>
1 2 3	td t t t d t d t d d d d d d d d t d t	3.62° 3.77	2,3 1,3	² ₁ ,3	2,3	68.33 t 73.94 d	3.62° 3.77	
23456789012345678901234567890123456789012345678901234567	23.76 t 39.39 t	1.48 1.78	2,3 1,3 1,2 2		2,4 3,5	35.51 t 23.78 t	1.49 1.51 1.47	1.63 1.76 1.52
7 8	72.79 d 39.34 t 23.75 t	3.63 1.51° 1.46 1.75	6	6 5,7 6		39.43 t 72.75 d 39.38 t	3.63 1.40°	
9 0	38.74 t 72.75 d	1.46 1.75 1.46 1.56 3.68	10 12	10 9,11	6,8 7,9 8	23.75 t 38.79 t 72.71 d	1.46 1.48	1.74 1.55
1 2 3	129.41 d 137.29 d	2.25° 5.80 5.65	6 10 12 10,12 10,13 12,14	10,12 11 12,14	10,12	42.36 t 129.36 d	1.46 1.48 3.68 2.26 5.81	
4 5 6	127.43.7.45.7.45.7.47.3.3.3.3.4.2.2.7.7.3.6.6.8.7.7.4.3.3.3.3.4.2.3.7.3.3.8.3.8.7.4.7.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	3.63 1.51° 1.46 1.75 1.46 1.56 3.68 2.25° 5.80 5.65 4.16 2.31 2.34 5.75 2.27 2.68 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.7	12,14 14 17	Î 2,14 13,15	14,16	72.71 d t 42.36 d d 129.36 d d t 329.35 d d t 430.71 d d t 329.15 1 329.15	325542552332331412.	2.33
7 8	131.69 d 39.08 t	3.00 5.75 2.27 2.68		15,17 16	,	130.71 d 131.73 d	5.69 5.79	
9 0	73.41 d 80.40 d	3.93 3.78 2.67	17 20 19,65 65 23,65	20		73.51 d 80.47 d	3:77 3:82	2.68
2 3	81.07 d 73.19 d	3.78 3.94		65 21,23 22,24 23		35.85 d 81.12 d	2.71 3.82	
4 5 6	42.08 t 72.42 d	1.70 2.12 4.02	23,25		25.25	42.13 t 72.47 d	1.70 4.02	2.13
7 8	37.47 t 139.32 s		29,66 29,66	25	25,27 26	37.79 t 37.49 t	1.68 2.12	1.70 2.26
9 0 1	127.63 d 68.56 d 73.28 d	5.70 4.80 3.93	25,66 29,66 29,32 32,33	30,66 29,31		127.74 d 68.57 d	5.73 4.83 3.94 4.38	
2 3	79.99 d 69.72 d	4.36 4.40		31		73.28 d 80.00 d 69.76 d	3.94 4.38 4.38	
5	31.59 t 76.63 d	5.70 4.80 3.93 4.36 4.40 4.20 1.99 2.08 3.68 3.78 1.74 2.13 2.28 2.68	33 33,36 32,37	36		139.29 s d 127.74 d d 68.57 73.00 d d 69.76 d d 68.25 t t 75.26 d 33.45	4.23 2.02 3.67	2.10
7 8	75.28 d 33.40 t	3.78 1.74 2.13 2.28 2.68		37	39 38	75.26 d 33.45 t	3.67 3.79 1.75 2.29	2 15
) : [152.82 s 77.49 d		67 39,41,67 42,67	42	38	28.82 t 152.95 s		2.15 2.71
2 3 1	76.06 d 71.42 d	4.45 3.57 4.29 1.69 2.39 4.24 4.40		42 41 42 43		152.95 s 77.44 d 76.11 d 71.49 d 32.77 t	4.49 3.57 4.31 1.69 4.26 4.44	
5	68.09 d 69.52 d	4.24 4.40	44,47 43,46 43,44,47 45,47 45,46,49			32.77 t 68.13 d	1.69 4.26	2.41
/ }	81.42 d 72.97 d 74.89 d	4.08 4.27	4/	45 46,48 47		68.13 d 69.59 d 81.44 d 73.05 d 74.90 d 130.64 d	4.11	
) 1	30.43 d 35.21 d	5.86 5.85	48,50,51 49,51 49,52	48,50 49		74.90 d 130.64 d	4.73 5.86	
,	30.43 t 34.27 t	2.16 2.19 2.08° 1.61 1.68	49,52 51	51	53 52,54 53	135.15 d 30.04 t 38.78 t	3.83 2.07 ^c 1.61	1.67
<u>.</u> 2 1	38.46 t 83.19 d 35.36 d 30.87 d 30.32 d 4 t 10.87 t 10.84 t 10.97 t	3.60 5.49	55,56 56,57 55,57 55,56,58	55 56	53	38.78 t 83.08 d 134.64 d 134.30 d 130.83 d 139.25 d 72.60 t 34.07 t	3.58 5.44	
	34.36 d 30.87 d 39.32 d	6.25 6.33 5.83	55,56,58 60	60		130.83 d 139.25 d	6.33 5.33	
) ^	72.97 d 35.08 t	4.21 2.08°		60 59 60 63	62	72.60 d 37.79 t	4.21 1.65	1.69
1	31.08 t 40.34 d 15.97 t	2.11 2.16 5.81 4.93 5.02	63,64 64 62,63	63 63	62 63	31.40 t 140.37 d	2.15 5.81	2.18
· ·	7.79 q 18.20 q 13.48 t	4.69 5.86 5.85 2.16 2.08° 1.61 3.60 5.49 6.33 4.21 2.11 2.16 4.93 1.76° 5.02 5.02 5.20	60 63,64 64 62,63 20 29 39,41	U3		116.18 t 7.83 q 18.23 q 113.39 t	44.55.21.35.66.54.15.65.11.24.4 44.55.21.35.66.54.15.65.11.24.4 11.73.11.56.54.15.65.11.24.4 11.73.11.56.54.15.65.11.24.4 11.73.11.56.54.15.65.11.24.4	5.00
		5.02 5.20 MHz. ^b Record		Hz. ^c 2H. ^d 3H		113:39 4	5.63	5.19

[&]quot;Recorded at 125 MHz. "Recorded at 600 MHz. "2H. "3H.

Figure 1. Selected 2D NMR Data of Luteophanol B (1).

C-47) were assigned by the HMBC cross-peaks for H-32/C-36 and H-47/C-43. The connectivity between C-18 and C-19 was deduced from HMQC-TOCSY cross-peaks for H-19/C-16 and H-20/C-17. Thus the structure of C-9-C-52 of luteophanol B (1) was elucidated. The both termini for C-1-C-9 and C-52-C-64 were, however, unassignable from the HMQC and HSQC data, since the methylene carbon chemical shifts of C-4 ($\delta_{\rm C}$ 23.76) and C-8 ($\delta_{\rm C}$ 23.75), C-5 ($\delta_{\rm C}$ 39.39) and C-7 ($\delta_{\rm C}$ 39.34), and C-9 ($\delta_{\rm C}$ 38.74) and C-54 ($\delta_{\rm C}$ 38.46) were very close to one another, and the one-bond C-H correlations were severely overlapped.

To overcome this problem, we demonstrated the CH₂-selected editing HSQC (E-HSQC) experiment, ^{5,6} in which the narrow F_1 spectral width of δ_C 50 ~ 20 gave very high F_1 resolution, since the methylene carbon signals of 1 were resonated from δ_C 45 to 20 except for an oxymethylene (δ_C 68.29, C-1) and two exomethylenes (δ_C 115.97, C-64; δ_C 113.48, C-67), of which the proton chemical shifts were separated from those of other methylene protons. In the CH₂-selected E-HSQC spectrum of 1, the cross-peaks for H₂-4 (δ_H 1.48 and 1.78)/C-4 (δ_C 23.76) and H₂-8 (δ_H 1.46 and 1.75)/C-8 (δ_C 23.75) and H₂-9 (δ_H 1.46 and 1.56)/C-9 (δ_C 38.74) and H₂-54 (δ_H 1.61 and 1.68)/C-54 (δ_C 38.46) were identified obviously. On the other hand, the cross-peaks for H₂-5/C-5 and H₂-7/C-7 were still overlapped, since both of proton and carbon chemical shifts were very close to each other. Further structural elucidation of the parts of C-1–C-9 and C-52–C-64 was performed by detailed analyses of the CH₂-selected E-HSQC-TOCSY⁶ spectrum. The E-HSQC-TOCSY pulse sequence was constructed by the insertion of MLEV-17 spin locking before acquisition in the E-HSQC pulse sequence. In the E-HSQC-TOCSY spectrum of 1, the correlations for H-3 (δ_H 1.63)/C-4 (δ_C 23.76), H-4 (δ_H 1.78)/C-5 (δ_C 39.39), H₂-9 (δ_H 1.56 and 1.46)/C-8 (δ_C 23.75), and H-8 (δ_H 1.75)/C-7 (δ_C 39.34) were observed, supporting the structure of the C-1–C-9 part. The structure of C-52–C-64 segment was assigned by the

cross-peaks for H₂-52 ($\delta_{\rm H}$ 2.19 and 2.16)/C-53 ($\delta_{\rm C}$ 34.27), H-54 ($\delta_{\rm H}$ 1.68)/C-53, and and H₂-62 ($\delta_{\rm H}$ 2.16 and 2.11)/C-61($\delta_{\rm C}$ 35.08).

The structures of C-1–C-10 and C-51–C-64 parts were confirmed by degradation experiments for 1 as follows. Luteophanol B (1) was treated with NaIO₄ followed by reduction with NaBH₄ and acetylation with acetic acid and pyridine. The reaction mixture was purified by silica gel HPLC to afford two segments 4 and 5.⁷ ESIMS data [m/z 735 (M+Na)⁺] and ¹H NMR data including ¹H-¹H COSY and TOCSY spectra of 4 revealed that the segment 4 corresponded to the heptaacetate of C-2–C-22 fragment generated by fission of the 1,2-diol bonds of C-1–C-2 and C-22–C-23 of 1. The segment 5 showed the pseudomolecular ion at m/z 373 (M+Na)⁺ in the ESIMS. The structure of segment 5 was assigned to be the diacetate of the C-49-C-64 fragment by analyses of ¹H-¹H COSY and TOCSY data.⁸ Therefore, the gross sturucture of luteophanol B was elucidated to be 1.

Relative stereochemistry of the two tetrahydropyran rings (C-32–C-36 and C-43–C-47) were deduced from ROESY correlations and ${}^{1}\text{H}^{-1}\text{H}$ coupling constants as shown in Figure 2. The trisubstituted double bond (C-28–C-29) and the two disubstituted double bonds at the diene system (C-56–C-59) were assigned to have all *E*-geometries from the following ROESY data: H-30/H₃-66, H-55/H-57, H-56/H-58, H-57/H-59, and H-58/H-60. Geometries of the three remaining disubstituted double bonds (C-12–C-13, C-16–C-17, and C-50–C-51) were concluded to be all *E* by the ${}^{1}\text{H}^{-1}\text{H}$ coupling constants ($J_{12,13}$ = 16 Hz, $J_{16,17}$ = 15 Hz, and $J_{51,52}$ = 15 Hz, respectively).

Luteophanol C {2, $[\alpha]_D^{20}$ +12° (c 0.19, MeOH)} was revealed to have the same molecular formula, $C_{67}H_{116}O_{25}$, as that of luteophanol B (1) by HRESIMS data [m/z 1343.7704 (M+Na)⁺, $\Delta \pm 0$ mmu]. The ¹H and ¹³C NMR data (Table 1) indicated that 2 contained two sp² quaternary carbons, twelve sp² methines, two sp² methylenes, twenty-seven sp³ methines including twenty-six oxymethines, twenty-two sp³ methylenes including one oxymethylene, and two methyl groups. Detailed analyses of 2D NMR data such as ¹H-¹H COSY, TOCSY, HSQC, CH₂-selected E-HSQC (Figure 3), HMBC, HMQC-RELAY, HMQC-TOCSY, and CH₂-selected E-HSQC-TOCSY spectra revealed that luteophanol

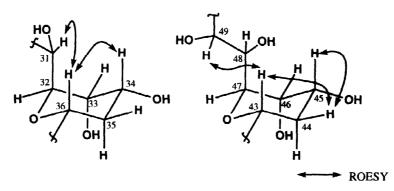


Figure 2. Relative Stereochemistry of Two Tetrahydropyran Rings of Luteophanol B (1). The coupling constants for these moieties (H/H in Hz) are as follows: 32/33 = -0 Hz, 33/34 = -0 Hz, $34/35\alpha = 10$ Hz, $34/35\beta = 2$ Hz, $35\alpha/36 = 10$ Hz, $35\beta/36 = 2$ Hz, $43/44\alpha = 10$ Hz, $43/44\beta = 2$ Hz, $44\alpha/45 = 9$ Hz, $44\beta/45 = 2$ Hz, 45/46 = -0 Hz, and 46/47 = -0 Hz

C (2) possessed the same gross partial structure as C-1–C-52 part of luteophanol B (1). The structure of C-52–C-64 part was assigned by the following CH₂-selected E-HSQC-TOCSY correlations; H-49/C-52, H-49/C-53, H-55/C-52, H-55/C-53, H-60/C-61, H-60/C-62, H-60/C-63, H₂-64/C-61, and H₂-64/C-62. Five di- and one trisubstituted double bonds were indicated to have all *E*-geometries by ROESY data (H-30/H₃-66, H-54/H-56, H-55/H-57, H-56/H-58, and H-57/H-59) and 1 H- 1 H coupling constants ($J_{12,13} = 16$ Hz, $J_{16,17} = 15$ Hz, and $J_{51,52} = 15$ Hz). Relative stereochemistry of the two tetrahydropyran rings (C-32–C-36 and C-43–C-47) was elucidated to be the same as that of 1 on the basis of ROESY data (H-31/H-36, H-34/H-36, H-43/H-44 β , H-43/H-49, and H-44 β /H-45) and 1 H- 1 H coupling constants ($J_{32/33} = \sim 0$ Hz, $J_{33/34} = \sim 0$ Hz, $J_{34/35a} = 10$ Hz, $J_{34/35b} = 2$ Hz, $J_{35a/36} = 10$ Hz, $J_{35b/36} = 2$ Hz, $J_{43/44a} = 10$ Hz, $J_{43/44b} = 2$ Hz, $J_{44a/45} = 9$ Hz, $J_{44b/45} = 2$ Hz, $J_{45/46} = \sim 0$ Hz, and $J_{46/47} = \sim 0$ Hz) of 2. Thus the structure of luteophanol C was concluded to be 2.

Luteophanols B (1) and C (2) possess two tetrahydropyrans rings and twenty-three hydroxyl groups on a C_{64} -linear carbon chain with one exo-methylene and two methyl branches, while luteophanol A (3) is a polyhydroxyl compound consisting of C_{57} -linear carbon chain with one sulfate ester. The partial structures of C-11-C-48 and C-61-C-64 parts of luteophanols B (1) and C (2) corresponded to those of C-5-C-42 and C-54-C-57 parts of luteophanol A (3). Luteophanols B (1) and C (2) contain a hydrophilic diene portion at C-55 ~ C-60 and C-54 ~ C-59, respectively, whereas amphidinols previously isolated as potent antifugal metabolites from dinoflagellates *Amphidinium* sp. $^{9-12}$ comprise a hydrophobic polyene system in this portion.

In this paper it was demonstrated that E-HSQC⁵ and E-HSQC-TOCSY⁶ are very useful tools for structure elucidations of complex natural products possessing many aliphatic methine and methylene carbons such as luteophanols B (1) and C (2). Especially, the CH₂-selected E-HSQC-TOCSY⁶ experiments seem to be suitable to assign very closely resonated carbon signals, since this method

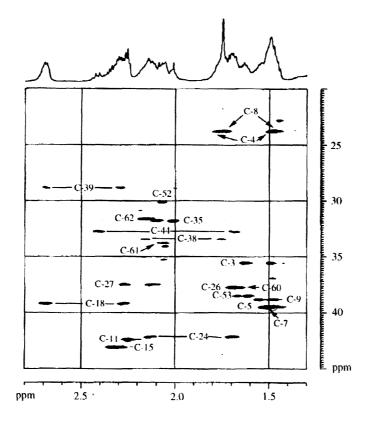


Figure 3. CH₂-Selected E-HSQC Spectrum (Part) of Luteophanol C (2).

affords the high resolution in F_1 axis by limiting the F_1 spectral width, in which sp² methylene carbons are resonated.⁶

EXPERIMENTAL SECTION

General Procedure. IR and UV spectra were recorded on JASCO FT/IR-5300 and JASCO Ubest-35 spectrophotometers, respectively. Optical rotations were measured on JASCO DIP-360 polarimeter. ESI mass spectra were obtained using sample dissolved in MeOH with a flow rate 2 μ L/min on a JEOL JMX-SX102A spectrometer.

Cultivation and Isolation. The dinoflagellate Amphidinium sp. (strain number Y-52) was unialgally cultured at 25 °C for two weeks in seawater medium enriched with 1% ES supplement. The harvested cells of the cultured dinoflagellate (385 g wet weight, from 725 L of culture) were extracted with MeOH (1 L x 3). The MeOH extract (15.19 g) was partitioned between hexane (500 mL x 3) and 1M NaCl aq, and the aqueous phase was successively extracted with CHCl₃ (500 mL x 3) and then n-BuOH (500 mL x 3). The n-BuOH soluble fraction (4.47 g) was subjected to a Sephadex LH-20

column [MeOH and then MeOH/ H_2O , (1:1)] to give luteophanol A (3, 0.004 %, wet weight) and the mixture (13.3 mg) of luteophanols B (1) and C (2). The mixture was purified by reversed-phase HPLC (Develosil ODS-5, 10 x 250 mm; eluent: 55 % MeOH/ H_2O ; flow rate: 2.5 mL/min; UV detection at 226 nm) to afford luteophanols B (1, 1.3 mg, 0.00033 % wet weight, t_R 18.4 min) and C (2, 1.1 mg, 0.00028 %, t_R 15.2 min).

Luteophanol B (1). Colorless amorphous solid; $[\alpha]_D^{20}$ +3.4° (c 0.21, MeOH); UV (MeOH) λ_{max} 232 nm (ϵ 21300); IR (KBr) ν_{max} 3430, 2925, 1630, 1385, and 1070 cm⁻¹; ¹H and ¹³C NMR (see Table 1); ESIMS m/z 1343.77 (M + Na)⁺; HRESIMS m/z 1343.7673 (M + Na)⁺. Calcd. for $C_{67}H_{116}O_{25}Na$, 1343.7704.

Luteophanol C (2). Colorless amorphous solid; $[\alpha]_D^{20}$ +12° (c 0.19, MeOH); UV (MeOH) λ_{max} 233 nm (ϵ 23500); IR (KBr) ν_{max} 3430, 2925, 1640, 1385, and 1065 cm⁻¹; ¹H and ¹³C NMR (see Table 1); ESIMS m/z 1343.77 (M + Na)⁺; HRESIMS m/z 1343.7704 (M + Na)⁺. Calcd. for $C_{67}H_{116}O_{25}Na$, 1343.7704.

NMR Experiments. The NMR samples of luteophanols B (1) and C (2) were prepared by dissolving 2.5 mg each in 400 μL of CD₃OD-C₅D₅N (2:1). ¹H and 2D NMR spectra were recorded on a Bruker AMX-600 spectrometer, while ¹³C NMR spectra were measured on a Bruker ARX-500 spectrometer. For HSQC, HMBC, HMQC-RELAY, and HMQC-TOCSY, a total of 512 increments of 2K data points were collected. The HMBC were recorded using standard pulse sequence with Z-axis pulsed field gradient. Sine-bell shaped gradient pulses were used with a 5:3:4 ratio and 1 ms duration, and maximum strength was 25.0 G cm⁻¹. For HMBC, 50 ms delay time was used for long range C-H coupling. For HMQC-TOCSY a mixing time for TOCSY was 60 ms. A BIRD pulse sequence in the HMQC-TOCSY and HMQC-RELAY experiments was used for suppressing proton signals bonded to ¹²C, and suppression of one-bond C-H correlations was performed by an insertion of 3.48 ms delay time before broad-band carbon decoupling at the beginning of acquisition time.

The CH₂-selected E-HSQC experiments were carried out using the following pulse sequence proposed by Davis with slight modification; 5 RD-BIRD[90° $_x$ (1 H)- Δ -180° $_y$ (1 H, 13 C)- Δ -90° $_x$ (1 H)-BD]-90° $_x$ (1 H)- Δ /2-180° $_x$ (1 H, 13 C)- Δ /2-90° $_{\Phi_1}$ (1 H)-90° $_{\Phi_2}$ (13 C)-editing[τ /2- β ° $_x$ (14 H)-180° $_{\Phi_3}$ (13 C)- τ /2]- t_1 /2-180° $_y$ (14 H)- t_1 /2-90° $_x$ (14 H, 13 C)- Δ /2-180° $_y$ (14 H, 13 C)- Δ /2-AQ $_{\Phi_4}$ (14 H, 13 C-decoupling); Φ 1 = 2(y), 2(-y); Φ 2 = x, 2(-x), x; Φ 3 = 4(x), 4(y), 4(-x), 4(-y); Φ 4 = 2(x, -x), 2(-x, x). For CH₂-selection, the editing flip angle β and the delay τ were π and 3.7 ms ($^{1}J_{CH}$ = 135 Hz), respectively. 6 The delays RD (repetition delay), BD (BIRD delay), and Δ were 2.0 s, 0.3 s, and 3.7 ms, respectively. 512 experiments, each with 64 scans, were performed with 1K data points in F_2 . The spectral width in F_1 and F_2 was 4545 (ca. 30 ppm) and 6666 Hz, respectively. Zero-filling was carried out in F_1 and F_2 to give data sets of 1K and 2K points, respectively. The data were processed using squared cosine-bell window function in both dimensions before 2D Fourier transformation.

For the pulse sequence of CH₂-selected E-HSQC-TOCSY, the trim (2.5 ms) and MLEV-17 composite pulses (mixinig time; 60 ms) were inserted between the last $\Delta/2$ and AQ in the E-HSQC pulse sequence described above. The spectrum was measured with the F_2 spectral width of 6666 Hz in 1K data points using 512 transients for each of 256 t_1 increments of the F_1 spectral width of 4545 Hz.

NaIO₄ Oxidation of Luteophanol B (1). A THF/phosphate buffer (1 M, pH 7.0) solution (1:1, 500 µL) of luteophanol B (1, 2.8 mg) was treated with NaIO₄ (6 mg) at room temperature for 1 h. After evaporation of the solvent in vacuo, the residue was extracted with MeOH (150 µL x 3) and the solvent was evaporated. To MeOH solution (300 μL) of the residue was added NaBH₄ (7.5 mg) at 0 °C, and stirring was continued at room temperature for 1 h. After addition of phosphate buffer (1 M, pH 7.0, 25 μ L) at 0 °C, the reaction mixture was stirred for 30 min. After the solvent was removed by N, stream, the residue was treated with pyridine (250 µL) and acetic anhydride (250 µL) at room temperature for 18 h. After evaporation of the solvent, the residue was partitioned between CHCl₃ (150 μL x 3) and H₂O (150 μL). The organic layer was evaporated, and the residue was purified by silica gel HPLC (YMC Pack silica-06, YMC Co., Ltd., 4.6 x 250 mm; eluent, hexane/i-propanol, 95:5; flow rate, 1 mL/min; RI detection) to afford compounds 4 (0.8 mg, t_R 48 min) and 5 (0.4 mg, t_R 5.6 min). 4: ¹H NMR (CDCl₃) $\delta_{\rm H}$ 0.98 (3H, d, J = 6.3 Hz, H₃-65), 1.37 (4H, m, H₂-4 and H₂-8), 1.55 ~ 1.64 (8H, H_2 -3, H_2 -5, H_2 -7, and H_2 -9), 2.05 (3H, s, AcO), 2.06, (3H, s, AcO), 2.08 (6H, s, AcO x 2), 2.10 (3H, s, AcO), 2.12 (3H, s, AcO), 2.13 (3H, s, AcO), 2.15 (1H, m, H-21), 2.25 \sim 2.35 (6H, m, H₂-11, H_2 -15, H_2 -18), 3.93 (2H, m, H_2 -22), 4.07 (2H, t, J = 7.6 Hz, H_2 -2), 4.87 (2H, m, H-6 and H-10), 5.06 (1H, m, H-19), 5.08 (1H, m, H-20), 5.28 (1H, m, H-14), 5.42 (2H, m, H-16 and H-17), 5.44 (1H, m, H-13), and 5.62 (1H, m, H-12); ESIMS m/z 735 (M + Na)⁺; HRESIMS 735.3603 (M + Na)⁺. Calcd. for $C_{36}H_{56}O_{14}Na$, 735.3568. **5:** ¹H NMR (CDCl₃) δ_H 1.46 (2H, m, H₂-53), 1.60 (1H, m, H-54), 1.65 (1H, m, H-54), 1.68 (1H, m, H-61), 1.76 (1H, m, H-61), 2.05 (6H, s, AcO x 2), 2.10 (2H, m, H₂-52), 2.18 (2H, m, H₂-62), 3.55 (1H, m, H-55), 4.52 (2H, m, H₂-49), 4.96 (1H, m, H-64), 5.03 (1H, m, H-64), 5.28 (1H, m, H-60), 5.52 (1H, m, H-50), 5.55 (1H, m, H-56), 5.62 (1H, m, H-59), 5.75 (1H, m, H-51), 5.80 (1H, m, H-63), 6.14 (1H, dd, J = 10.5 and 16.5 Hz, H-57), and 6.23 (1H, dd, J = 10.3 and 16.5 Hz, H-58); ESIMS m/z 373 (M + Na)⁺; HRESIMS 373.2003 (M + Na) $^{+}$, Calcd. for C₂₀H₃₀O₅Na, 373.1991.

Acknowledgments. We thank Mr. K. Watanabe, GC-MS & NMR laboratory, Faculty of Agriculture, Hokkaido University, for measurements of ESIMS. This work was partly supported by a Grant-in-Aid for Sankyo Foundation of Life Science and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

REFERENCES AND NOTES

- 1. Ishibashi, M.; Takahashi, M.; Kobayashi, J. Tetrahedron 1997, 53, 7827-7832.
- 2. Ishibashi, M.; Kobayashi, J. Heterocycles 1997, 44, 543-572 and references cited therein.
- 3. Doi, Y.; Ishibashi, M.; Nakamichi, H.; Kosaka, T.; Ishikawa, T.; Kobayashi, J. J. Org. Chem. 1997, 62, 3820-3823.
- 4. Lerner, L.; Bax, A. J. Magn. Reson. 1986, 69, 375-380.
- 5. Davis, D. G. J. Magn. Reson. 1991, 91, 665-669.
- 6. Fukushi, E.; Tanabe, S.; Watanabe, M.; Kawabata, J. Magn. Reson. Chem. in press.
- 7. $[\alpha]_D$ values of 4 and 5 were not reliable due to small amount of samples and small values of optical rotations.
- 8. Although the triacetate of C-49-C-64 fragment was obtained from the reaction mixture, the sample was too small to measure 2D NMR data.
- 9. Paul, G. K.; Matsumori, N.; Konoki, K.; Murata, M.; Tachibana, K. J. Mar. Biotechnol. 1997, 5, 124-128.
- 10. Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. 1991, 113, 9851-9861.
- 11. Yasumoto, T.; Seino, N.; Murakami, Y.; Murata, M. Biol. Bull. 1986, 172, 128-131.
- 12. Paul, G. K.; Matsumori, N.; Murata, M.; Tachibana, K. Tetrahedron Lett. 1995, 36, 6279-6282.